سفارش تبلیغ
صبا ویژن



بهار88 - مهندسی پلیمر(polymer engineering)

روشی برای استحکام پلیمرهای هادی الکتریسیته ابداع شد .


روشی برای استحکام پلیمرهای هادی الکتریسیته ابداع شد .

شیمی‌دانان کانادایی در دانشگاه مانیتوبا موفق شده‌اند روش تازه‌ای را برای بالا بردن میزان استحکام مواد پلیمری که در صنایع الکترونیک مورد استفاده هستند، تکمیل کنند. به گزارش ایرنا، حوزه الکترونیک پلیمر - بنیاد که در آن به جای استفاده از فلزات برای هدایت الکتریسیته از رشته‌های پلیمری استفاده می‌شود به واسطه آنکه مواد پلیمری از استحکام برخوردار نیستند و بر اثر عبور جریان برق گرم می‌شوند و سختی و استحکام اولیه خود را از دست می‌دهند،

رشد چندانی نداشته است.یکی از علل مقاومت کم رشته‌های پلیمری در برابر حرارت، موادی است که به عنوان ناخالصی به آنها افزوده می‌شود تا بر میزان قابلیت هدایت برق در آنها بیفزاید.می‌توان با متصل کردن رشته‌های مولکولهای پلیمر به هم بر میزان استحکام و سختی این مواد افزود اما اشکال این روش در آن است که پلیمر را به عایق الکتریسیته مبدل می‌کند و مانع استفاده از آن در صنایع الکترونیک می‌شود.به نوشته نشریه علمی کمیکال ماتریالز? ،Chem. Materشیمی‌دانان دانشگاه مانیتوبا پلیمر تازه‌ای با استفاده از ماده شیمیایی موسوم به اسید انیلینی بورونیک ? anilineboronic acidتولید کرده‌اند که بسیار مستحکم است و خود قادر به افزودن ناخالصی به ساختار داخلی خود به منظور بالا بردن توان هدایت الکتریسیته است.
برای تولید این نوع پلیمر اسید انیلینی بورونیک حرارت داده می‌شود و این امر موجب تغییر ساختار شیمیایی این مولکول و باعث می‌شود اتمهای بورون باردار در درون ساختار مولکول تازه به صورت رشته‌های زنجیره‌ای موازی به یکدیگر متصل شوند.این امر سبب می‌شود هم بر استحکام پلیمر افزوده شود و هم توانایی هدایت الکتریکی آن بالاتر برود.

.

شیمی‌دانان کانادایی در دانشگاه مانیتوبا موفق شده‌اند روش تازه‌ای را برای بالا بردن میزان استحکام مواد پلیمری که در صنایع الکترونیک مورد استفاده هستند، تکمیل کنند. به گزارش ایرنا، حوزه الکترونیک پلیمر - بنیاد که در آن به جای استفاده از فلزات برای هدایت الکتریسیته از رشته‌های پلیمری استفاده می‌شود به واسطه آنکه مواد پلیمری از استحکام برخوردار نیستند و بر اثر عبور جریان برق گرم می‌شوند و سختی و استحکام اولیه خود را از دست می‌دهند،
رشد چندانی نداشته است.یکی از علل مقاومت کم رشته‌های پلیمری در برابر حرارت، موادی است که به عنوان ناخالصی به آنها افزوده می‌شود تا بر میزان قابلیت هدایت برق در آنها بیفزاید.می‌توان با متصل کردن رشته‌های مولکولهای پلیمر به هم بر میزان استحکام و سختی این مواد افزود اما اشکال این روش در آن است که پلیمر را به عایق الکتریسیته مبدل می‌کند و مانع استفاده از آن در صنایع الکترونیک می‌شود.به نوشته نشریه علمی کمیکال ماتریالز? ،Chem. Materشیمی‌دانان دانشگاه مانیتوبا پلیمر تازه‌ای با استفاده از ماده شیمیایی موسوم به اسید انیلینی بورونیک ? anilineboronic acidتولید کرده‌اند که بسیار مستحکم است و خود قادر به افزودن ناخالصی به ساختار داخلی خود به منظور بالا بردن توان هدایت الکتریسیته است.
برای تولید این نوع پلیمر اسید انیلینی بورونیک حرارت داده می‌شود و این امر موجب تغییر ساختار شیمیایی این مولکول و باعث می‌شود اتمهای بورون باردار در درون ساختار مولکول تازه به صورت رشته‌های زنجیره‌ای موازی به یکدیگر متصل شوند.این امر سبب می‌شود هم بر استحکام پلیمر افزوده شود و هم توانایی هدایت الکتریکی آن بالاتر برود.

 لطفا نظراتتونو برام ارسال کنید:saeidi.polyeng@yahoo.com
saeidi.polyeng@gmail.comمؤدب



نویسنده » محمد . ساعت 5:3 عصر روز سه شنبه 88 شهریور 17


پلی یورتان

 

پلی یورتان : کوپلیمری پرکاربرد

 

آزاده آصف نژاد

 

دانشجوی دکترای مهندسی پزشکی – بیومواد دانشگاه آزاد اسلامی واحد علوم وتحقیقات
  الاستومرهای پلی یورتانی، خانواده‌ای از کوپلیمرهای توده‌ای بخش شده است که کاربردهای مهمی در زمینه‌های گوناگون صنعتی و پزشکی پیدا کرده است. اولین پلی یورتان، از واکنش دی‌ایزوسیانات آلیفاتیک با دی‌آمین به‌دست آمد. اتو بایر و همکارانش اولین بار این  پلی‌یورتان را معرفی نمودندکه به شدت آبدوست بود و بنابراین به عنوان پلاستیک یا فیبر نمی‌توانست مورد استفاده قرار گیرد. واکنش بین دی‌ایزوسیانات‌های آلیفاتیک و گلیکول‌ها منجر به تولید پلی یورتانی با خصوصیات پلاستیکی و فیبری گردید. به دنبال آن، با استفاده از دی‌ایزوسیانات آروماتیک و گلیکول‌های با وزن مولکولی بسیار بالا، پلی‌ یورتانی به‌دست آمد که خانواده مهمی از الاستومرهای ترموپلاستیک به شمار می‌رود.

 

 

 


خواص یورتانها از مواد ترموست بسیار سخت تا الاستومرهای نرم تغییر می‌کند. از پلی یورتانهای ترموپلاستیک، در ساخت وسایل قابل کاشت بسیار مهمی استفاده می‌شود، چرا که دارای خواص مکانیکی خوب نظیر استحکام کششی، چقرمگی، مقاومت به سایش و مقاومت به تخریب شدن، به علاوه زیست سازگاری خوب می‌باشند که آنها را در گروه مواد مناسب جهت کاربردهای پزشکی قرار می‌دهد.
کاربردهای پلی یورتان‌ها
با استفاده از پلی اترها به عنوان پلی‌ال،  در سنتز پلی یورتان می‌توان کاشتنی‌های طولانی مدت تهیه نمود، که در قلب مصنوعی، کلیه مصنوعی، ریه مصنوعی، هموپرفیوژن،  لوزالمعده مصنوعی، فیلترهای خونی،  کاتترها، عروق مصنوعی، بای‌پس سرخرگ‌ها یا سیاهرگ‌‌ها، کاشتنی‌های دندان و لثه، بیماریهای ادراری، ترمیم زخم، رساندن یا خارج کردن مایعات، نمایش فشار عروق، آنژیوپلاستی، مسدود کردن عروق، جراحی عروق آئورت و کرونری، دریچه‌های قلب ‌سه‌لتی و دولتی  کاربرد دارند.
در صورتی که از پلی اترها به عنوان پلی‌ال،  در سنتز پلی یورتان استفاده شود، پلی یورتان‌های زیست تخریب پذیر مدت تهیه می‌شود که به طور مثال در کانال هدایت بازسازی عصب، ساختارهای قلبی –عروقی، بازسازی غضروف مفصل ومنیسک زانو، برای تعویض وجایگزینی استخوان اسفنجی، در سیستم‌های رهایش کنترول شده دارو و برای ترمیم پوست  کاربرد دارد. شکل (1) برخی از وسایل و ایمپلنت‌های پلی‌یورتانی مورد استفاده در پزشکی را نشان می‌دهد.

 


تاثیر ساختار شیمیایی  و مورفولوژی سطح روی خون سازگاری پلی یورتان
در اواخر سال 1980 تعدادی از دانشمندان، شیمی، ساختار و مورفولوژی سطح پلی‌یورتان‌ها را مورد بررسی قرار دادند و به تدریج روش‌های جدید پوشش دهی سطح به‌همراه پیوندهای مواد دیگر به سطح پلی‌یورتان‌ها،  با هدف بهبود خونسازگاری ابداع شد. در سالهای اخیر، ترکیب شیمیایی پلی‌یورتان‌ها جهت بهبود خونسازگاری با تغییرات بسیار زیادی همراه شده است. از جمله این موارد سنتز پلی‌یورتان یا پلی‌یورتان ِیورا با قسمت‌های نرم آبدوست است.
 «Cooper»، نیز در مورد ارتباط بین شیمی پلی‌ال‌ها و خون‌سازگاری پلی‌یورتانها، تحقیقاتی را برروی نمونه‌های مختلف پلی‌یورتانها با پلی‌ال‌های متفاوت نظیر PEO، PTMO، PBD (پلی‌بوتادین) و PDMS انجام داد.  این پلی‌یورتان‌ها به روش پلیمریزاسیون دو مرحله‌ای تهیه شدند و بر روی لوله‌‌های پلی‌اتیلنی پوشش‌دهی شده و سپس درون بدن سگ قرار گرفتند تا پاسخ لخته‌زایی آنها مشخص گردد. پلی‌یورتان با پلی‌ال PDMS  کمترین لخته‌زایی را نسبت به نمونه‌های دیگر نشان داد. طبیعت آبگریز PDMS باعث بهبود آبگریزی سطح پلی‌یورتان پایه PDMS و در نتیجه توجیهی برای بهبود خون‌سازگاری آن نسبت به سایر موارد می‌شود و میزان چسبندگی اولیه پلاکت‌ها با افزایش آبدوستی پلی‌ال‌ها افزایش می‌یابد. بنابراین باید گفت که خون‌سازگاری پلی‌یورتان‌ها بستگی زیادی به ترکیبات سازنده آن و عوامل مختلف نظیر جداسازی میکروفازها، ناهمگنی سطح و آبدوستی سطح خواهد داشت.
استفاده از سولفونات یا پوشش‌هایی نظیر هپارین در تغییر پاسخ خون به این مواد نقش بسیار عمده‌ای را ایفا می‌کنند. محققی به نام Santerre   [55]، پلی‌یورتان‌هایی را بر پایه سولفونات سنتز نمود که دارای گروه‌های مختلف سولفور(3.1 % - 1.4%)   بود. در نمونه‌های با گروه‌های سولفونات بیشتر زمان لخته‌زایی افزایش یافت.

 

ادامه مطلب...


نویسنده » محمد . ساعت 1:53 عصر روز شنبه 87 آبان 11


 

 تولید مواد شبه پلیمری نانو

 تولید چسب نانوییمحققان موفق به ساخت چسب نانویی شدند.محققان موفق به ساخت چسب نانویی شدند.
این چسب نانویی از سوی دانشمندان انستیتو پلی تکنیک رنسلر در نیویورک ساخته شده که به هنگام قرار گرفتن در بین سطوح مختلف به عنوان عامل چسبنده، تنها یک نانومتر ضخامت دارد.
به گفته دانشمندان این پروژه، ارزان بودن و مقاومت قابل توجه در برابر دماهای بالا از جمله ویژگی های این چسب نانویی به حساب می آید.
چسب های فعلی در مقایسه با چسب نانویی ساخته شده به هنگام قرار گرفتن در بین دو سطح ضخامتی هزار برابر دارند. دانشمندان این انستیتو به رهبری پروفسور رامانات در جریان ساخت این چسب دریافتند که همزمان با بالا رفتن دما تا ??? درجه سلسیوس، استحکام چسب تولید شده بیشتر خواهد شد.
بر اساس گزارش آی.تی.وایر، این چسب با استفاده از زنجیره های کربن، هیدروژن، سیلیکن و سولفور ساخته شده است. این نانوپلیمر در ادامه میان فیلم نازکی از مس و سیلیکا قرار می گیرد.
چنین ترکیبی موجب می شود تا مولکولهای داخلی چسب از حرارت در امان بوده و در عین حال با افزایش دما تا درجه خاصی بر استحکام آن افزود


فناوری نانونتایج مدلسازی مولکولی یا محاسبات، در بخش شیمی تحلیلی کاملا جا افتاده است. مدلسازیهای چند مقیاسی نیز با دقت بالاتر ومحاسبات سنگین تر پیگیری می شود.نتایج مدلسازی مولکولی یا محاسبات، در بخش شیمی تحلیلی کاملا جا افتاده است. مدلسازیهای چند مقیاسی نیز با دقت بالاتر ومحاسبات سنگین تر پیگیری می شود. تئوریهای مولکولی و مدلسازیها، شامل تئوری ساختار الکترونی ومدلسازی به عنوان یک زبان بین المللی علمی در اغلب شاخه های علوم ومهندسی پذیرفته شده است. شیمی، فیزیک، بیولوژی بر مبنای مشاهدات، و دستکاریهایی در حوزه انسانی، به مدلسازی مولکلوی وابسته شده اند. علوم مهندسی این علوم محض را با یکدیگر ترکیب کرده و با ملاحظات اقتصادی و مولفه های کمی فیزیک آن را به حوزه تجارت می رسانند. فیزیک محیطهای پیوسته و تفکر عمیق در طبیعت رفتاری الکترونها در اتم در سالهای ???? میلادی خبر از توسعه مکانیک آماری و مکانیک محیطهای پیوسته می داد. ظهور دانش شیمی- فیزیک و اساس ساختارهای مولکولی دراواخر ???? میلادی حاکی از درک پیوندهای شیمیایی می داد که در نهایت در سالهای ???? توسعه یافت و روشهای شیمی کوانتوم که در سالهای ???? توسعه یافتند. مدلسازی مولکولی یک روش مرکزی است که با درک رفتار کوانتائی مواد، حتی از دیدگاه پیش گویی به موفقیتهایی رسیده است. توسعه تولیدات و عوض شدن پروسه های ساخت وتولید با ظهور مدلسازی مولکولی واثر آن دستخوش دگرگونی شده است مدلسازی مولکولی می تواند به عنوان یک زیر ساخت نامرئی در توسعه علم و فناوری مورد توجه قرار گیرد. پیشرفتهائی در قدرت سخت افزاری کامپیوترها، مسبب پیشرفتهائی در نرم افزارهای شبیه سازی شده است که تغییراتی رویایی را در مدلسازی پدید آورده است و بسیاری از مسائل پیچیده را حل کرده است و حتی در نگرشهای بنیادین علوم، تغییراتی را بوجود آورده است. آیا دانش هوش مصنوعی دنیا را دگرگون خواهد کرد؟
ارزش نتایج محاسباتی، سریعا افزایش خواهد یافت در صورتیکه فورا گسترش و رشد یابد. اما آنها زمانی گرانبها خواهند شد که معنی این نتایج به سمت مهندسی یا نیازهای توسعه، هدایت شود. پیشرفتهایی در قدرت محاسباتی، درک و قابلیتهای ما را در کاربردی کردن فیزیک و شیمی محاسباتی توسعه خواهد داد. همانگونه که پیشرفتهایی بزرگ در تکنولوژی اغلب منشعب از نتایج و مشاهدات آزمایشگاهی است، مدلسازی مولکولی با افزایش دقت در حل پیچیدگیهای مدل به گونه ای که منجر به نتایج سودمند کاربردی شود، در رشد تکنولوژی مفید است. البته نباید از نظر دور داشت که ??% مسائل در ذهن ساخته و پرداخته می شود وابزارهای محاسباتی تنها راهی برای آزمایش، روشهای مختلف حل هستند. مدلسازی موثر و مدیریت نتایج آن، به برداشت کارشناسی و موفقیت آمیز از کدهای مدلسازی مولکولی وابسته است البته، انتخاب روشهای تئوری بر پایه مجموعه شیمی کوانتوم یا پتانسیلهای بر هم کنشی (شبیه سازی مولکولی) حداقل نقش و سطح را در تصمیم سازی ایفاد می کنند. کدام ترکیب برای متعادل کردن زمان و دقت مورد نیاز است؟ بهترین تنظیمات برای بهترین نتایج صنعتی کدامند؟ یک Interface مناسب می تواند در خواست ها را ارزیابی کند و پیشنهاداتی را در جهت برآورد زمان محاسبات و سایر منابع مورد نیاز، به استفاده کننده نشان دهد. همچنین با نشان دادن نتایج و تصویر سازی نتایج محاسبه شده راههایی را برای ارزیابی نشان می دهد

 

  لطفا نظراتتونو برام ارسال کنید:saeidi.polyeng@yahoo.com
saeidi.polyeng@gmail.comمؤدب



نویسنده » محمد . ساعت 1:50 عصر روز شنبه 87 آبان 11


 تقطیر، در واقع ، جداسازی فیزیکی برشهای نفتی است که اساس آن ، اختلاف در نقطه جوش هیدروکربنهای مختلف است. هر چه هیدروکربن سنگینتر باشد، نقطه جوش آن زیاد است و هر چه هیدروکربن سبکتر باشد، زودتر خارج می‌شود. اولین پالایشگاه تاسیس شده در جهان ، در سال 1860 در ایالت پنسیلوانیای آمریکا بوده است. نفت خام ، از کوره‌های مبدل حرارتی عبور کرده، بعد از گرم شدن وارد برجهای تقطیر شده و تحت فشار و دما به دو صورت از برجها خارج می‌شود و محصولات بدست آمده خالص نیستند. انواع برجهای تقطیر در زیر توضیح داده می‌شوند.

برجهای تقطیر با سینی کلاهکدار

در برجهای تقطیر با سینی کلاهکدار ، تعداد سینیها در مسیر برج به نوع انتقال ماده و شدت تفکیک بستگی دارد. قطر برج و فاصله میان سینی‌ها به مقدار مایع و گاز که در واحد زمان از یک سینی می‌گذرد، وابسته است. هر یک از سینی‌های برج ، یک مرحله تفکیک است. زیرا روی این سینیها ، فاز گاز و مایع در کنار هم قرار می‌گیرند و کار انتقال ماده از فاز گازی به فاز مایع یا برعکس در هر یک از سینی‌ها انجام می‌شود. برای اینکه بازدهی انتقال ماده در هر سینی به بیشترین حد برسد، باید زمان تماس میان دو فاز و سطح مشترک آنها به بیشترین حد ممکن برسد.

بخشهای مختلف برج تقطیر با سینی کلاهکدار

بدنه و سینیها: جنس بدنه معمولا از فولاد ریخته است. جنس سینی‌ها معمولا از چدن است. فاصله سینی‌ها را معمولا با توجه به شرایط طراحی ، درجه خلوص و بازدهی کار جداسازی بر می‌گزینند. در بیشتر پالایشگاههای نفت ، برای برجهای تقطیر به قطر 4ft فاصله میان 50 - 18 سانتیمتر قرار می‌دهند. با بیشتر شدن قطر برج ، فاصله بیشتری نیز برای سینی‌ها در نظر گرفته می‌شود.

سرپوشها یا کلاهکها: جنس کلاهکها از چدن می‌باشد. نوع کلاهکها با توجه به نوع تقطیر انتخاب می‌شود و تعدادشان در هر سینی به بیشترین حد سرعت مجاز عبور گاز از سینی بستگی دارد.

موانع یا سدها: برای کنترل بلندی سطح مایع روی سینی ، به هر سینی سدی به نام "وییر" (Wier) قرار می‌دهند تا از پایین رفتن سطح مایع از حد معنی جلوگیری کند. بلندی سطح مایع در روی سینی باید چنان باشد که گازهای بیرون آمده از شکافهای سرپوشها بتوانند از درون آن گذشته و زمان گذشتن هر حباب به بیشترین حد ممکن برسد. بر اثر افزایش زمان گذشتن حباب از مایع ، زمان تماس گاز و مایع زیاد شده ، بازدهی سینی‌ها بالا می‌رود.

برجهای تقطیر با سینی‌های مشبک

در برجهای با سینی مشبک ، اندازه مجراها یا شبکه‌ها باید چنان برگزیده شوند که فشار گاز بتواند گاز را از فاز مایع با سرعتی مناسب عبور دهد. عامل مهمی که در بازدهی این سینیها موثر است، شیوه کارگذاری آنها در برج است. اگر این سینیها کاملا افقی قرار نداشته باشند، بلندی مایع در سطح سینی یکنواخت نبوده و گذر گاز از همه مجراها یکسان نخواهد بود.

خورندگی فلز سینیها هم در این نوع سینیها اهمیت بسیار دارد. زیرا بر اثر خورندگی ، قطر سوراخها زیاد می‌شود که در نتیجه مقدار زیادی بخار با سرعت کم از درون آن مجاری خورده شده گذر خواهد کرد. و می‌دانیم که اگر سرعت گذشتن گاز از حد معینی کمتر گردد، مایع از مجرا به سوی پایین حرکت کرده بازدهی کار تفکیک کاهش خواهد یافت.

برجهای تقطیر با سینی‌های دریچه‌ای

این نوع سینیها مانند سینیهای مشبک هستند. با این اختلاف که دریچه‌ای متحرک روی هر مجرا قرار گرفته است. در صنعت نفت ، دو نوع از این سینیها بکار می‌روند:

انعطاف پذیر: همانطور که از نام آن برمی‌آید، دریچه‌ها می‌توانند بین دو حالت خیلی باز یا خیلی بسته حرکت کنند.

صفحات اضافی: در این نوع سینیها ، دو دریچه یکی سبک که در کف سینی قرار می‌گیرد و دیگری سنگین که بر روی سه پایه‌ای قرار گرفته ، تعبیه شده است. هنگامی که بخار کم باشد، تنها سرپوش سبک به حرکت در می‌آید. اگر مقدار بخار از حد معینی بیشتر باشد، هر دو دریچه حرکت می‌کنند.

مقایسه انواع گوناگون سینی‌ها

در صنعت نفت ، انواع گوناگون سینی‌ها در برجهای تقطیر ، تفکیک و جذب بکار برده می‌شوند. ویژگیهایی که در گزینش نوع سینی برای کار معینی مورد توجه قرار می‌گیرد، عبارت است از: بازدهی تماس بخار و مایع ، ظرفیت سینی ، افت بخار در هنگام گذشتن از سینی ، زمان ماندن مایع بر روی سینی ، مشخصات مایع و ... . چون در صنعت بیشتر سینی‌های کلاهکدار بکار برده می‌شوند، برای مقایسه مشخصات سینی‌های دیگر ، آنها را نسبت به سینی‌های کلاهکدار ارزیابی می‌کنند.

برجهای انباشته

در برجهای انباشته ، بجای سینی‌ها از تکه‌ها یا حلقه‌های انباشتی استفاده می‌شود. در برجهای انباشته حلقه‌ها یا تکه‌های انباشتی باید به گونه‌ای برگزیده و در برج ریخته شوند که هدفهای زیر عملی گردد.

ایجاد بیشترین سطح تماس میان مایع و بخار

ایجاد فضا مناسب برای گذشتن سیال از بستر انباشته

جنس مواد انباشتی

این مواد باید چنان باشند که با سیال درون برج ، میل ترکیبی نداشته باشند.

استحکام مواد انباشتی

جنس مواد انباشتی باید به اندازه کافی محکم باشد تا بر اثر استفاده شکسته نشده و تغییر شکل ندهد.

شیوه قرار دادن مواد انباشتی

مواد انباشتی به دو صورت منظم و نامنظم درون برج قرار می‌گیرند.

پر کردن منظم: از مزایای این نوع پر کردن، کمتر بودن افت فشار است که در نتیجه می‌شود حجم بیشتر مایع را از آن گذراند.

پر کردن نامنظم: از مزایای این نوع پر کردن ، می‌توان به کم هزینه بودن آن اشاره کرد. ولی افت فشار بخار در گذر از برج زیاد خواهد بود.

مقایسه برجهای انباشته با برجهای سینی‌دار

در برجهای انباشته ، معمولا افت فشار نسبت به برجهای سینی‌دار کمتر است. ولی اگر در مایع ورودی برج ، ذرات معلق باشد، برجهای سینی‌دار بهتر عمل می‌کنند. زیرا در برجهای انباشته ، مواد معلق ته‌نشین شده و سبب گرفتگی و برهم خوردن جریان مایع می‌گردد. اگر برج بیش از حد متوسط باشد، برج سینی‌دار بهتر است. زیرا اگر در برجهای انباشته قطر برج زیاد باشد، تقسیم مایع در هنگام حرکت از بستر انباشته شده یکنواخت نخواهد بود.

در برجهای سینی‌دار می‌توان مقداری از محلول را به شکل فرایندهای کناری از برج بیرون کشید، ولی در برجهای انباشته این کار، شدنی نیست. کارهای تعمیراتی در درون برجهای سینی‌دار ، آسانتر انجام می‌گیرد. تمیز کردن برجهای انباشته ، از آنجا که باید پیش از هرچیز آنها را خالی کرده و بعد آنها را تمیز نمایم، بسیار پرهزینه خواهد بود.

 

 لطفا نظراتتونو برام ارسال کنید:saeidi.polyeng@yahoo.com
saeidi.polyeng@gmail.comمؤدب



نویسنده » محمد . ساعت 1:5 عصر روز دوشنبه 87 مهر 22